If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+10p-43=4
We move all terms to the left:
p^2+10p-43-(4)=0
We add all the numbers together, and all the variables
p^2+10p-47=0
a = 1; b = 10; c = -47;
Δ = b2-4ac
Δ = 102-4·1·(-47)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-12\sqrt{2}}{2*1}=\frac{-10-12\sqrt{2}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+12\sqrt{2}}{2*1}=\frac{-10+12\sqrt{2}}{2} $
| 0.3x+0.5=0.5x-0.7 | | (2-((5/(3x-7))=2 | | 4z/9+5=6 | | -30*x=-120 | | 10a^2-20a-39=-9 | | 9x-6=9(x+8) | | 3x-9+5x-25=180 | | 2(x-2)^2+6=0 | | -2g-5=3 | | 2-0.4=n | | 3t-2=2t+7 | | 1x-3=1x+5 | | 1x-3=1x=5 | | 1.54c-2.4=6 | | 14x+10+11x+22=180 | | 3=2r−7 | | -3(y-4)=6y-42 | | 2x-24=1x+5 | | 3(2x-4)=x-2 | | -4x+32=4(x-8) | | 70+x(20)+80=180 | | (3t-5)=2t | | 70+20(x)+80=180 | | 8(w+4)=-9w-19 | | 70+20x+60=180 | | 3(x+6=36 | | 4x+41=-5(x+8) | | 11u=22 | | 8(11-2b)=4b-22 | | 10+5x=73-2x | | 3v–95=v-23 | | 2c-52=c |